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Abstract
Computing pattern spectrum is onc of the key methods for determining shape-size distribution of objects in the image. Mor-
phological algorithm for computing the pattern spectrum by successive epening and area compulting is very costly on sequential

machines, In this paper a fast algorithm for the same using the chess-board distance transform is proposed.

Keywords: Mathematical morphology; Binary objects; Distance transform; Pattern spectrum

1. Introduction

The problem of shape representation and shape-size description is very imporiant in computer vision and
image analysis. An algebraic system of operators, such as those of mathematical morphology, are useful for the
purpose because when acling on complex shapes they are able to decompose them into their meaningful parts
and separate them from extrancous parts as in (Giardina and Dougherty, 1990; Matheron, 1975; Maragos,
1989; Haralick and Shapiro, 1992; Scrra, 1982). Serra (1982) has extensively used these size distributions in
image analysis applications to petrography and biology. Maragos (1989) has viewed the size distribution via a
concept of pattern spectrum and has cxtended the pattern spectrum 1o gray-tone images and arbitrary multi-
level signals. Morphological operators are suitable for parallel implementation and morphological algorithms
arc very fast on parallel machines because simple and identical operations are applied simultaneously to many
points. Due to the same rcason they, including the algorithm for computing the pattern spectrum, arc usually
very slow on sequential machines. Here we propose a fast algorithm suitable for sequential machines for com-
puting the pattern spectrum with respect to a family of circles using the chess-board distance transform matrix
(as in (Ghosh and Chanda, 1993)).

This paper is organized as follows. In Section 2 we present some basic definitions of morphological operations
and describe the pattern spectrum as in (Serra, 1982; Maragos, 1989). The proposed method is described in
Section 3. Section 4 presenis the implementation and computational complexity, Section 5 presents the con-
cluding remarks.
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2. Preliminaries

Monochrome image or simply image, refers to a two-dimensional intensity function S(x, ), where x and
denote spatial coordinates and the value of f(x, ) at any point (pixel) is proportional to the brightness (o
gray-value) of the image at the point. Here we deal with binary images only. More precisely we deal with 2-I
objects represented as a maximal set of connected points having gray-value 1.

Let A4, B be subsets of R* or Z%, where R and Z are the set of real and integer numbers, respectively.

(i) Dilation ~ D(A, B)={a+b | acA, beB}= bUB {A+b) (1

where A+p={a+p | ac4} denotes the translate of A by the vector D.

(ii) Erosion  E(4,B)={a | B+acd}= bﬂn (A~D} 2
(iii) Opening  O(4, B)=D(E(4, B), B) (3!
(iv) Closing ~ C(A, B)=E(D(4, B), B) (4]

B is called the structuring element.

Let B be a compact subset of the plane R such B is called a continuous space binary pattern. Let B have siz
one. Then the set

rB={rb | beB) G,
defines a homotopic pattern of size r, where 7 is any nonnegative real number, The shape of rB is the same &
that of B. Now, if B is a discrete space binary pattern, i.e. a finite connected subset of the discrete plane 72, the

nB=D(D(~ D(D(D(B, B), B),B), ...), B), B) . (6

n times

Eq. (6) defines a family of binary patterns generated by B parameterized by the discrete size parameter n (n=0

1,2,..). By convention if n=0, nB= {(0,0)}. Multi-scale opening of A by Batscale n=0, 1, 2, ... is the openin
of A by nB:

O(A,nBY=D(E(A, nB), nB) . (7.
From (7), (1) and (2) it follows that
ou,nBy= U B+, (8.
(nB+p)cAd

Hence O(4, nB) eliminates from A all objects or their parts inside which #B cannot fit. That is why the size nn 0
nB is referred to as synonymous with the scale at which the filter O(A4, nB) operates. The pattern spectrun
provides a measure of similarity between a set and the collection of all structuring elements #B. The patter:
spectrum PS,(n, B) of a set A in terms of the structuring element B is given by Maragos (1989) as

PS4(n, B)=#[0(4,nB)—O(4, (n+1)B)] for n>0 (9

where neZ and #{ -] denotes the cardinality of any set. Since opening is an anti-extensive operation and nJ3 i
increasing as n increases,
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O[4, (n+1)B1<O[4,nB] fornz0. (10)

Thus #[O(A, nB)] is nonnegative and is decreasing as » increases. Since 4 is finite, there exists a positive
integer N=max{n | O(4, nB) #@}. Then #[O(4, nB)] =0 forall n>A.

Eq. (9) suggests that the pattern spectrum can be computed by successive opening followed by set subtraction
followed by area computing (pixel counting) procedure. The method of computing the pattern spectrum by
direct implementation of Eq. (9) is referred to as “conventional method™. It is evident that the conventional
method is very slow if implemented on a sequential machine, at least when N is reasonably large. Here we suggest
a fast algorithm for computing the pattern spectrum using the distance transform of the binary image. A detailed
discussion of the distance transform can be found in Rosenfeld and Kak (1982).

Since 8-connectivity for objects is popular, in this paper we consider the chess-board distance defined as d(p,
g) =max{|x—u|, |[y—v|} where (x, y) and (u, v) are coordinates of p and ¢ respectively. To each pixel in a
given set 4, the distance transform assigns a number which is the minimum distance between the pixel and 4°
(i.e., the complement of A). For a binary image these numbers form a matrix DT whose elements are: DT'(x,
y) =min,,{d(p, )} such that p(x, y)ed and g(u, v)eA°. That means if DT'(x, y)=n and B={(~1, ~1),
(=1,0), (=1, 1), (0, =1), (0,0), (0, 1), (1, =1), (1,0), (1, 1)}, then at most (n—1)B centered at (x, y)
can fit in 4. In other words, O(4, nB)Y=U{nB+ (x, y}} for all (x, y) such that DT(x, y)>n+1. Secondly,
max,,DT(x, y) =N+ 1. Therefore, #[O(4, nB)] can be computed from the distance transform matrix DT and
#[nB].

3. The proposed method
In this section the mathematical basis of the proposed algorithm is presented. Let us recall Eq. (9) which can
be rewritten as: ’
PS,(n, B)=#[0(A4, nB)]-#[O(A4, (n+1)B)] forO<n<gN.

Foreground A of the binary image may be considered as the union of 4, 4,, etc. We know, if 4, 4, ..., 4,, are
m sets then

HA VAUV A,)
=Y #A4,— Y #H(And)+ L #E(ANANA) (= 1) (A nAdynnd,,) . (1)
In the present context, the set A; is defined as follows. Consider any arbitrary distance transform value /, then
Ai={(x, p) | max{|x—u|, |y—v|}</&DT(u,v)=1}. (12)

That is, 4, (1<i<m) consists of the pixels lying within an upright square of size (2/— 1)* around (u, v). So, the
firstterm of Eq. (11)is % #A,=mx (2/— 1)

Now let (x;, y;) and (x;, y;) be the coordinates of the central pixel of 4; and A4, respectively. So the number of
pixels in the set (4;nA4;) is

[2041—{x;=x; | ]# [20+ 1=y =¥;] ] -

For each 4; (1<i<m) we take 4; (1<j<m), so that the number of (4;nA4;) considering all i and j (i#]) is
#1). Then the second term of Eq. (11), i.e. X #(4;n4;), equals

Z( Y, {2/+1—|xi—xj[}*{21+1—Iy,—);,l}).

i N U=i)

Next for the third term of Eq. (11), i.e. I #(4;n4;n4y), let (x; yi) be the central pixel of Aj. Firstly, the
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relative distances of each central pixel from the other two are determined. Then we consider the maximy
distance along x- and y-direction to compute the number of pixelsin (4,nA4;nA,), which is

[214+ 1 —max{|x;—x;|, [ X =xp ], |5 —x, |} ] # 20+ 1=max{1yi=y; [, |yi=yil, 1y~ )] -

For each 4; (1<i<m) we take A; (1<j<m) and 4, (I<k<m). So the number of pixels of (Aind;nd
considering all i, jand k (i#/, ik, j#k) is (. So,

2 H(A nAind) = Z Z ;[21+1_max{|xi'"xj|’ i =X, 15— | }]

(i#j#k)

(204 T—max{|y;—y; |, [y =els |9 =pe]}

Now by generalizing the last term of Eq. (1), ie. (=1)™# (A4, nAdrn “*nA,,) can be found as follows.
Let the coordinate of the central pixel of Ay be (X, ¥in). So the steps are:

Firstly, find out the relative distances of each central pixel from the others along the x-direction (say), th
is, find out

[xi=x2 |, | X =X3], oy |X =X |y oves X=X [y ooy [ Xt =X | .
Secondly, find out the maximum of them, say d,.,., where

_ s - |1
dx—max = max 1 '“\i _'-\j I Joe
E<ism, Lsjsm (i#))

Similarly we can find out the maximum relative distances along the y-direction, say dy.max. Finally,

#(Al ﬁAZﬂ"'ﬂA”,)= [(2/+ I "d\'—max)]* [ (2l+ 1 "dv—mnx)] .

Different way of interpretation

In our presentation if DT'(x;, y;) >/ then A; may be defined as {IB+ (x, ¥i)}. So the computation of the fi
term of Eq. (11) is straightforward and the computation of the second term is more or less manageable, B
computing the third and the higher terms is very costly because relative positions of many sets are involved. O
basic aim is to reduce the computational cost. If we implement the above idea then the computational cost w
be too high. In the following discussion the above idea of computing the cardinality of the combined sels
interpreted in a slightly different way. Now we are interested in finding out the number of additional pixels di
to each set A4; given the number of pixels added already due to the set A ~ Earlier we have us
#(A;04)) =#A,-+#A,--—#(A,mAj). Presently we consider, for the same purpose, the relatic
#(A4;04) =%#A;+#(4;—4;). The idea is that during raster scan of the distance transform as we encounter «
1.e. DT(x, y) =1, we search for the nearest A;’s in the previous rows and in the same row but previous columt
and once found, the number of additional pixels due to A;jis determined depending on the distances.

Algorithm

for ISISKN+1doC=0;

forall (x, y) if DT(x, y~1)2/do
if DT(x,y—1)2!then

ifDT(x—1,y)>then C;=C,+1; [
else if DT (x—u, y+v) 2/ (for 1 <y, v<2/=2) then C;=C/+u; [:
else C;=C+ (2/—1); [

elseif DT'(x—1, y)2/then C\=C+ (2/~1) [«
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else if DT (x—u,, y—w;) 2! (for L <uy, v, €2/-2) then
if DT (x—uy, y+v,) 2! (for 1 Suy, 1,€2/-2) then

Cr=C—(21-1)*+ (21-1—u)) (2l 1~p)) = 2l=1—=u)) (2l-1-v,); [5]
else C=C+ (21— 1)2— 2l=1—=u) (2[-1~vy); (6]
else if DT (x—uy, y— 1) = (for 1 15, 1.<2/—2) then
C=C+ (21—1)2= (21—-1—-uy) (21— 1~13); [7]
else C;=C+(21-1)2 [8]
enddo;

enddo;

[Note: “if DT'(u, v) 2! (for 1<u, v<2/~2) then..” means loop until DT (u, v) =1 is true, and when the
condition is satisfied the statement is executed. Secondly, “v” is varied in the inner loop. ]
Hence the pattern spectrum is computied as

PS (., BY=Cyo —Ciya for0</<N and PSH(N,B)=Cyy -

4. Computational complexity

It may be of interest to compare the computational complexities of the conventional method, the fast algo-
rithm suggested by Bronskill and Venetsanopoulos (1992) and our algorithm for computing the pattern spec-
trum. Before going to the detailed discussion let us categorize the foreground or the objects in two types: S, and
S,. The object in which the pixels having the same distance transform value are connected is called an S, type
object, otherwise it is called an S type object. Examples are shown in Fig. 1. The computational complexity for
the pattern spectrum is invariant to the types of object when the conventional or Bronskill’s method is consid-
ered. In our case, however, the type of the object is important.

First we study the computational complexity for the various algorithms for S, type objects. Let A be one such
object. Let the number of pixels in 4 be Q and let the number of pixels having distance transform value [ be »,
(for 1 /< N+1). Then obviously

My >NHa> > > Ny >Ny, and ottty iy =0

The radius of a maximal disc centered at (.x, p) that can fit in the object is equal to (DT'(x, y)~1), i.e., (/-1)
if DT(x, v) =/, and the number of pixels in the disc of radius (/—1) is (2/—1 )

In the conventional method the number of operations to erode with a disc of radius (/—1) is (2/—2)*+Qand
the number of operations to dilate with the same disc is (2/— 1 )2 3441 . So the number of operations 1o open
with a disc of radius (/— 1) is (2/—1)2x [Q+ S ¥+ . ]. Finally the total number of binary operations to com-
pute the pattern spectrum is

(a) (b) () {d)

000000000000 0000000 Q0000000000000 0000C Q0000 G00000000000G00 000000000000 0000000
0111411111111111110 011112111111111113110 0111110000000111110 0111110000000111110
0141411111111111110 or1zaz2e2eelellees1 0 0111110000000111110 01222100000001 22210
0ot11111114111111110 0123333333333333210 0111110000000111110 012321 00000001 23210
0111114111111111110 0122222334332222210 0111111111111111110 o1z2e111111111 28210
0111111111111111110 0111112233322111110  01114111111111111410 o11iiiae2aaas111440
0000011111111100000C 0000011 222221100000 0000011111111100000 00000111222211 Q0000
0000001111111 000000 00G0001111111000000 Q00000111111 0000C0 0000000111111 000000
00000000011 00000000 00000000011 00000000 00000000011 00000000 00000000011 00000000
0000000000000 000000 0000000000000 0000C0 Q0000000000000 0000 0000000000000 0O000

Fig. 1. () S type object. (b) Its distance transform. {c) S, Lype object. (d) Its distance transform,
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N+1 N+1
) [(21—1)2*{Q+ )y nk}]. (13)

I=1

Hence the order of computational complexity of the Conventional Algorithm is O ((N+ 1 ).

In the modified algorithm suggested by Bronskill and Venetsanopoulos (1988 ), the structuring element isa
disc of radius one. The number of pixels of this disc is 9. Now the number of operations to erode with a disc of
radius 1 is [9%Z ¥+ ne] and the number of operations to dilate with a disc of radius (I=1)is [9+Ix ZFEN 1 k).
Thus the number of operations to open with a disc of radius (/—1) is

N1 N+1 N+1
9x Z nk+9*l* nk=9*[n1+(1+1)]* Z Hy .
k=1 k=l+1 k=i+1

Hence the total number of operations to compute the pattern spectrum is

N+1

Y [9*[n,+(l+1)]*kN$ll nk]. (14)

=1 =

Hence the order of computational complexity of the modified algorithm is O((N+1)%).

We first apply the chess-board distance transform algorithm to the binary image and then apply the proposed
algorithm for finding the pattern spectrum. Before finding the complexity for the algorithm it is necessary (o
discuss the computational complexity for the chess-board distance transform. The sequential algorithm to cony-
pute the chess-board distance transform requires 9 binary operations and 1 addition operation per pixel. We
have numbered the different steps of the proposed algorithm on the right-hand side. Let j be such a step. Let the
probability of action j due to distance transform / be denoted by P/[/].

Then both experiments and intuition suggest that, for an $, type object, P,[5]=P,[6]=P,[7]=0 for all !
Fi[2] and P,[8] are very small. Before going into detail let us assume P,[1] and P,[3] are equally likely for the
distance transform /. Then the number of binary operations for distance transform / is

N+1 N+1
{2P,[l] kz—:l nk}+{(2+2N/2)'P,[2]'[l-—-P,[l]] LZ'I nk}
+{(2+2N/2)-P/[3]-[1—P/[1]-1’/[2]] ZZ, m}

+{(2+2N/2)'P/[4]'[1—1’/[1]—1’/[2] - P [3]] Nil ”k}

k=1

+{[2+2N/2+(2N/2)2+2*2N/2]~P,[8]-[1—P,[l]—P,[2]-—P,[3] —P[41] Nil nk}
k=1

=(2P[1]+ (N+2)-P[2]-[1-P[1]]

+(N+2)P[3] [1=P[11-P[2] ]+ (N+2) P[4]- [1~P[1]—P[2] = P[3]]

+[(3N+2)+N2]-P/[8]'[1~1’/[1]—”1[2]“”'[3]]"])’[4]}Zi/l "
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={2P[1]1+(N+2)- [P2]+P[3] +P[4]]-[1- P [1]]
— (N+2)[P[3]-P[2] ~P,[4]-P[2]] - P/[4] P,[3]]

+LVH 124+ (74 D] PI8T L =P ~P21 = P31 1-PiL41) 3 e (150)

Now again P,[2] < P,[3] and P,[8] has the order O(1/N-+1). So (15a) can be written as
(2P[11+(N+2)(P[3][1=P[1]]1=P3]P[2] =P [4] P [2]

N+1

—P[4]-P[3])+[O((N+1)*)-O(1/N+1)(1-2P[1])} kE_l[ -

Hence the order of computational complexity of the proposed algorithm is

[O(N+1)+(N+2)- (O(N+1) O(N+1)=O(N+1)O(N+1)—=O(N+1)-O(N+1)
—~O(N+DO(N+1))+0((N+1)2) - O(N+1)+O((N+1)%) .

Now the number of addition operations is
PUT+P[2]-(1=P[1])+P[3]- (1 =P [1] = P[2])
+P[4] (1=P[1]=P/[2]1=P[3]) +=O((N+1)?). (15b)

Hence the total computational complexity from (15a) and (15b) isO((N+1 ™.
Next we study the computational complexity for the various algorithms for S, type abjects. For S, type cbjects
P,[5], P,[6], P,[7] are not zero. So the number of binary operations for these steps are

{12+ (2N+1)/2+ (2N/2) 1R[] [1 =~ P[ 11 = Bi[2] = P[3] - Fi[4]]
+[2+ (2N+1)/2+ (2N/2)*1P[6] [1=P[1]1-P[2]1 - P, [3] - Pi[4] = P[5]]
+ 2+ (2N+1) /24 (2N/2)2+2N/21P[T1[ 1 =P L] = Pi[2] = Pi[3] = Pi[4]

N1
—P[5]-PL6]1} él m2O((N+1)%) .

Now again 2,[2] < P,[3] and P,[5], P,[6], P;[7] are small compared to /;[3] or P,[4] and P,[8] has the order
O(1/N+1).

Then a similar approach as above suggests that the computational complexity for S, type objects of the pro-
posed algorithm is also of the order of O((N+1 ™).

Hence for both S, and S, types of objects the computational complexity of the algorithm is O((N+1)?).
From this it can be adjudged that the time complexity of the algorithm will be less than for the conventional and
modified algorithms. i

The pattern spectrum, as defined in Eq. (9), is computed in two steps. First, the distance transform DT(x, )
is computed using the two-pass algorithms designed for sequential machines as in (Rosenfeld and Kak, 1982).
Second, the cardinality of the combined sets corresponding to DT(x, y) =/ is computed using the proposed ;
algorithm. Finally, the pattern spectrum PS,(n, B) is determined. During implementation of the algorithm, a 5
look-up table is used instead of computing the addendum for different local spatial distributions of the pixels 3
(xi v,). The algorithm is tested on a large number of images containing S, or S, or both types of objects. Com- i
puter programs for the proposed algorithms are written (in C) and are executed on a PC-AT-286 on 15 MHz.
Some examples are shown in Figs. 2~4, where (a) shows the input image and (b) shows its pattern spectrum.
Time requirements due to the different algorithms are listed in Table 1.

4
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Fig. 2. (a) 5 type object. (b) Its pattern spectrum.

Fig. 3. (a) S, type object. (b) Iis patiern spectrum.
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Fig. 4. (a) S, and S type object. (b) Iis pattern spectrum.
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Table 1
Figure no. Fig.2 Fig.3 Fig. 4
Type Sy AYS S &S,
Size 6464 64x64 64x64
Proposed 3.90s 1.54s 221s
Conventional 20.11s 14.01s 16.05s
Modified 14.69 s 9.57s 11.27s

(Bronskill)

5. Conclusion

This paper presents a fast algorithm for computing the pattern spectrum for sequential machines. The algo
rithm is based on the distance transform using the chess-board distance metric, since in most of the imag
processing works 8-connectivity is assumed for the objects. It is experimentally found that the proposed alge
rithm (including the sequential method for computing the distance transforms) is much more efficient than th
conventional morphological algorithm and the modified algorithm proposed by Bronskill and Venetsanopoulo
(1988) for computing the pattern spectrum. Since the structuring element B is convex, it can be decompose:
into smaller discs or into simpler structures, In that case the computational efficiency of the conventional metha
is greatly improved as in (Zhuang and Haralick, 1986; Xu, 1991). However, this approach is not attemple
because the order is still not better compared to the proposed method.
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